
Computer Organization and Architecture: A Pedagogical Aspect 

Prof. Jatindra Kr. Deka 

Dr. Santosh Biswas 

Dr. Arnab Sarkar 

Department of Computer Science & Engineering 

Indian Institute of Technology, Guwahati 
 

Lecture - 22 

Organization and Optimization of Microprogrammed controlled Control Unit 
 

Welcome to the unit 8 on the Module of Control. So, what we are discussing as of now in this 

module that how basically we can execute the controls, if the methodology is a micro program 

control. So, in the last unit basically we have seen the very basic idea of a micro programmed 

control unit that given a mainly we have discussed only the fetch part of the instruction. In 

fetch part of the instruction we have seen that what are the corresponding signals, and how we 

write it in a micro program control memory, and how we go through them. 

Then we have discussed how basically we can optimize it, because in case of a micro program 

control memory we just give the signals which has to be made 0s and 1 and we write it into the 

memory. And then what we do basically, one after another we keep on fetching them and we 

are putting this those output of the memory are directly given as fed to the ports. 

But then we have seen that there are lot of zeros and lot of zeros in this memory then we have 

seen how to optimize them using a vertical and hybrid micro program. But in this basically 

what we will try to do we will be mainly focusing on optimization of micro programmed control 

unit in more depth and by taking more specific examples. And also another focus will be we 

will try to see the execution of a full instruction. Because in the last unit we just saw about only 

the fetch part of it, that is this unit is basically an extension of the previous unit. In fact, the 

micro program is a slightly larger topic so we have dedicated two units for that. 

So, this is the part we are going to cover and then as a pedagogical method, so we will see what 

is the summary of the unit. 

701



(Refer Slide Time: 02:01) 

 

(Refer Slide Time: 02:02) 

 

So, basically a full program which is one of the main emphasis, how to see a full program 

which is written or and or the idea we will get that how one or after the macro instructions are 

executed in terms of a micro instructions when it is a micro program concept. So, a full program 

is written in terms of machine instruction that is macro program how it is executed. For each 

machine instruction when it is in the decoding cycle based on the Op-Code, the corresponding 

micro program is loaded into the memory. For first phase they have means very simple that is 

fetch. 

702



So, already we have seen that for each fetch, the corresponding three micro microinstruction 

are executed, after that basically it waits; that means what? So, whenever a new instruction has 

to be executed, the micro program PC is pointed to the instruction which corresponds to 

basically your fetch. So, if you think about this is your micro program memory, may be these 

three are dedicated for fetch. So, whenever new instruction is macro instruction is to be 

executed the micro program counter will point to this. After it has done it will come to the end 

of the fetch part. 

Then what happens? Then the instruction register actually decode what the exact instruction is. 

If it is add, if it is store, if it is load accordingly the MPC will be pointed to different part. 

Maybe this part of the memory corresponds to add. So, it will jump over here. Maybe it is for 

subtract or multiply. So, if it is multiply, so it will from here it will actually jump to here; that 

means, based on the instruction register based on the macro program or the macro instruction 

being executed, it will actually load the micro program, and PC corresponding to the micro 

program for that instruction, like this maybe for add this maybe for multiply. Then, it starts 

actually the real execution of this instruction in terms of its micro program. So, this is one thing 

we are going to see for some temp template instructions. 

The micro program counter fetches each micro instruction in sequence and then generate the 

required signal or if required jumps will also be there. So, but basically it goes to this point and 

to add or respective instruction to be executed corresponding to the instruction register which 

is being decoded, that is the real execution starts, it will keep on doing it till it gets end. 

So, one the present micro program is called is complete, the next micro program is loaded based 

on the new instruction. So, once this add has been done then again automatically it finishes, 

then automatically the micro program will start pointing to this part, which is actually again 

fetch. So, if will actually fetch the new instruction. 

So, now the MPC this program will be executed. So, my MPC will be pointing out to this micro 

program memory which corresponds to fetch. So, automatically again new instruct, new macro 

instruction will fetch and the procedure will go. 

So, there are basically three steps; when a new macro, macro instruction has to be executed; it 

will first load the MPC correspond to the micro program memory address, control micro 

program control memory address, which correspond to fetch. Three instructions will be 

executed. Then again the MPC will wait to get a new value. So, where the value will come 

703



from, the instruction register by that time has decoded the macro instruction and corresponding 

to each macro instruction like add, multiply, store over different address formats it would 

actually point to the corresponding micro program in the memory. 

Then it will keep on executing that, and once it is done the whole instruction is completed and 

a new macro instruction has to be executed. Then again the fetch part starts and it will keep on 

going in. So, that is actually what is the idea of a total program execution in terms of a micro 

program control. 

(Refer Slide Time: 05:32) 

 

So, now how you can do it? A very simple solution; for each machine instruction you write a 

micro program. For fetch it is 1, because and then for add you write 1, for load you write 1, for 

subtract you write 1 and you can take a very huge micro program memory from the fetch part 

will be there, after that there will be add, then again for the next instruction there will be again 

fetch and again the corresponding real execution micro program will be there and you keep on 

doing it; it will be a huge code with lot of redundancies. 

So, what is the solution? That basically because there are so many different type of addressing 

modes etcetera. And if you write different micro codes for each addressing modes, each type 

of instruction type so it will be a huge memory, but you can do it. It will solve the problem; 

depending on the IR decoding you can directly go to that instruction and execute it, but that is 

actually going to be a very very unoptimized solution. 

704



So, what we do basically we try to keep something in common for example, the fetch part is 

common to all. So, there will be only a 3 bits or 3 word memory for fetch and then for example, 

if we have subtract and say add 2 instructions are there. So, only difference will be basically is 

subtract we will make the ALU to sub, subtraction will require the signal which corresponds 

to the ALU sub should be made one and in case of add the control unit control input to the 

ALU, which is corresponds add will be 1 other than that whole the program will be similar. 

So, therefore, basically we can write a single micro program for add and sub with just a 

branching instruction. That if we find out the instruction decoder is saying for the sub, then 

slight the slight change will go to one part and if it is add you just go to one part then the other 

part can be common, so that way we will actually save in the micro program memory size. 

So, that is the common part of the micro routines can be shared which will reduce, but in that 

case we will be require lot of branching parts, but that is however it’s ok. That is whatever is 

common you put together and whenever you have to go to some other part of the other 

instruction, which is uncommon between them, as I told you in this case only one word will be 

different, in which case sub equal will be equal to 1 and in this case the add will be equal to 1, 

because they need to configure the ALU in different mode only that that instruction will be 

different. So, you can easily write a branching program which will do accordingly. So, basically 

the micro programs are written in a branching fashion. 

So, that is one of the key idea of this unit which we will be starting to look at basically. We 

will take a full instruction and see how it is executes and also at the same time we are also 

going to study how basically this branching should happen and at the same time I will also try 

to see that basically we will take one practical example of an instruction and we will also see 

how we can practically optimize the instructions based on clustering, because in the last unit 

we have just give an idea of clustering, but here we are going to take a much more elaborate 

look at how the optimization can do. So, therefore, they are the two basic things we are going 

to focus here. 

705



(Refer Slide Time: 08:34) 

 

So, what is the objective of this unit because as we are following a pedagogical approach. So, 

we for each unit we actually define the objectives and in the end we try to see whether the 

objectives have been met. So, what is the objective it’s a comprehension objective explain 

about the branch control mechanism in micro program. 

That is very very important we should this should be able to do it because, without branching 

it will be a very very unoptimized solution, and in fact, if there are branch instructions; 

obviously, micro program has to be have follow a branching path and not only because of the 

inherent program should have branching there should be a branching in the micro instructions, 

also because I told you in micro program lot of parts of different micro programs corresponding 

to different macro instructions will be similar. So, you have to branch in between them to 

optimize the memory size. 

Then estimate the size of control unit to implement the control store to implement the control 

unit that is you have to estimates the sign of the control, you have to estimate the sign of the 

address part, and also we have to find out the how many signals are there. So, all these based 

on a certain memory arch certain architecture of a single bus or multi bus, you should be able 

to. Mainly we will be concentrating around single bus architecture, you should be able to 

estimate what are the different bits required to store each part of the control memory; that 

corresponds to the control signal generation, then the condition check as always the branching 

address check. And as an application objective demonstrate the impact on performance of 

706



control word depending on the format of the control word; that means, performance based on 

the format of control. 

So, example if you have a very compressed format. So, it the control unit will take no time it 

is a very flat like of horizontal format, that will be very fast. So, you will be able to demonstrate 

the efficiency based on the format of the control units, format of the control word basically; 

that means, whether it’s a full horizontal vertical or hybrid. So, these are the basic three 

objectives. 

(Refer Slide Time: 10:19) 

 

So, let us start with the unit. So, basically what happens as we are discussing, for each 

instruction of the CPU there is a corresponding micro program for generating the control signal. 

For each macro instruction there will be a micro instruction, there will be a micro program. 

Each micro program is sequence of micro instructions, and it is nothing but zeros and ones 

which is in a memory as we have already seen. Each position of control word specify the 

particular signal and this is placed in memory. So, it can be 0 and 1 and you can directly take 

the memory word out control memory word out and give it to the respective ports. So, that 

basically they are actually called the control memory and we generally call it as a micro 

program control memory. 

 Since this machine instruction is executed corresponding to a micro program, it starts it follow 

the starting address of the micro routine as specified as a function of the contents of IR this is 

very important; I was as a say that there are different macro instructions what the macro 

707



instruction should do will be decoded by the instruction decoder taking the values from IR. So, 

based on the IR value instruction decoder value we should be able to point out to a location in 

the main in the micro program control memory, which corresponds to the micro program for 

that macro instruction. 

And as I told you generally we are trying to have we do not try to keep this try to keep this 

control memory very long, by giving separate micro program for each macro instruction, 

whether we try to write a common program and for each of taking set of macro instructions by 

trying to keep the common part similar and if there is wherever there are diversions we can put 

jumps, so that how basically it works. 

(Refer Slide Time: 11:53) 

 

And in fact, as I told you jump branch to incorporate branching, here also you will require to 

check the contents of the code control status flag etc. So, that is already we have seen in the 

last unit then basically the if we have jump instruction is there, you have to check some control 

fields as well as many control can be from the status as well as the from the some signals 

actually which are coming from the I/O devices. So, that is very similar to a macro program 

part. 

But actually here branching is 2 that is one thing you have to emphasize; one is a normal branch, 

but none one branch means basically what corresponds to the macro program. So, if the macro 

program says that you have to do a branch based on the condition, the micro program will 

branch correspondingly. 

708



Another is micro program inherent branch; that is inherent branching. So, why this inherent 

branching is there? Because I told you because if there is add instruction or sub instruction, we 

do not require two different micro programs for that we will have say, but depending on the if 

it’s a add or subtract we actually branch to a part which is the only uncommon part and then 

again come back and follow the common part it. 

So, there is some inherent nature of optimization of the micro program. So, that you require 

inherent jumping. So, that we can have a common program and jumps are done only when the 

instructions are the different part we can do. So, we can have a similar same micro instruction 

for both add, subtract, load, may be whatever are the common instructions. So, therefore, we 

require many branches in a micro program execution compared to a macro program. 

So, basically a full program written in terms of machine instruction basically executes as 

follows. For each machine instruction that is the macro instruction where it is in the decoding 

phase, as I already told you the fetch is over first is the fetch phase. 

(Refer Slide Time: 13:34) 

 

The Op-Code actually corresponds to the micro program. The Op-Code corresponding to the 

micro program is loaded into the control memory. Basically that the idea is that in this case you 

can just think in this manner that whenever a macro instruction is there has come to this for as 

for come for execution, immediately you execute the micro instruction for fetch. 

709



After that basically there is a decoding. So, once the decoding is done basically that is the 

decoding cycle. So, when the decoding is done the corresponding MPC points to the memory 

of the macro program, which corresponds to that particular instruction. So, if there are as I told 

if there are multiple instruction like add, sub, multiply, which will be similarly we have made 

a single code to optimize space, then for all any of these instructions you start pointing to the 

start point of that corresponding instruction. 

Now whether it is an add or subtraction or multiply at 1 point of time it will diverge out and 

again come back. For example, as I told if we have 𝑎𝑑𝑑 𝑅1, 𝑀 and say 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑅1, 𝑀. So, 

only one point that is the control of the ALU will be different. So, only that particular it will 

diverge again come back because after doing the computation, again you have to write back 

the value of because say many parts will be common like loading the value of M from the 

memory then again after doing the computation the values has to be written to R and those 

parts of the microinstructions will be common. So, that part will be common and only the jump 

will be based on the signals made to the ALU. 

We will take an example which will make the things clear, but just I we are giving the brief 

theory here and then the micro program counter fetches each micro instruction and they execute 

in sequence or jumps to the required location. So, when there are jumps there will be 2 jumps 

one is an inherent jump because of the macro program and when because of this optimization 

of the memory space, the micro program is common to many instructions taken together. So, 

you have to jump accordingly then the IR actually the instruction register tells where to jump. 

So, how it exactly implements we will see. 

So, once the micro program is controlled the next micro program is loaded based on the new 

instruction that is very important. So, when add has been done. So, now, add is complete, then 

the MPC will start pointing 2 again the fetch part of it that is it corresponds to the new 

instruction or the new macro program macro instruction ok. 

710


